
A Parallel Evolutionary Algorithm for Prioritized Pairwise
Testing of Software Product Lines

Roberto E. Lopez-Herrejon
Johannes Kepler University

Linz, Austria
roberto.lopez@jku.at

Javier Ferrer
Universidad de Málaga,
Andalucía Tech, Spain
ferrer@lcc.uma.es

Francisco Chicano
Universidad de Málaga,
Andalucía Tech, Spain

chicano@lcc.uma.es
Evelyn Nicole Haslinger
Johannes Kepler University

Linz, Austria
evelyn.haslinger@jku.at

Alexander Egyed
Johannes Kepler University

Linz, Austria
alexander.egyed@jku.at

Enrique Alba
Universidad de Málaga,
Andalucía Tech, Spain
eat@lcc.uma.es

ABSTRACT
Software Product Lines (SPLs) are families of related soft-
ware systems, which provide different feature combinations.
Different SPL testing approaches have been proposed. How-
ever, despite the extensive and successful use of evolutionary
computation techniques for software testing, their applica-
tion to SPL testing remains largely unexplored. In this pa-
per we present the Parallel Prioritized product line Genetic
Solver (PPGS), a parallel genetic algorithm for the genera-
tion of prioritized pairwise testing suites for SPLs. We per-
form an extensive and comprehensive analysis of PPGS with
235 feature models from a wide range of number of features
and products, using 3 different priority assignment schemes
and 5 product prioritization selection strategies. We also
compare PPGS with the greedy algorithm prioritized-ICPL.
Our study reveals that overall PPGS obtains smaller cover-
ing arrays with an acceptable performance difference with
prioritized-ICPL.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

Keywords
Combinatorial Interaction Testing, Software Product Lines,
Pairwise Testing, Feature Models

1. INTRODUCTION
A Software Product Line (SPL) is a family of related

software systems, which provide different feature combina-
tions [21]. The effective management and realization of vari-
ability – the capacity of software artifacts to vary – is crucial

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598305.

to reap the benefits of SPLs such as increased software reuse,
faster product customization, and reduced time to market.

Because of the large number of feature combinations in
typical SPLs, variability modelling poses a unique set of
challenging problems for software testing. In recent years
many verification and testing SPL approaches, which rely
on different techniques, have been proposed (e.g. [5, 6, 8,
16]). However, and despite the extensive and successful use
of evolutionary computation techniques for software test-
ing [12, 18], their potential application to SPL testing re-
mains largely unexplored, in particular regarding test prior-
itization.

In this paper we present the Parallel Prioritized product
line Genetic Solver (PPGS), a genetic algorithm for the gen-
eration of prioritized pairwise testing suites for SPLs. PPGS
receives as input a feature model that denotes a set of valid
feature combinations and computes a set of products that
covers the desired pairs of feature combinations according
to a priority scheme that assigns different priority weights
to a set of products. This scheme has been sketched in [16]
and it is currently successfully applied in an industrial set-
ting. We performed a comprehensive evaluation of PPGS
with 235 feature models with a wide range of number of
features and number of products, using 3 different weight
priority assignment methods and 5 product prioritization
selection strategies. In addition, we compared PPGS with
prioritized-ICPL [16], an alternative greedy algorithm im-
plementation. For the statistical comparison analysis both
algorithms were executed 30 times for each feature model
and combinations of priority assignment and product pri-
oritization which yielded a total of 79800 independent runs
that required about two weeks of computation on a 64-core
dedicated cluster. Our study revealed that overall PPGS
obtains smaller covering arrays with an acceptable perfor-
mance difference with prioritized-ICPL. However, the per-
formance difference tends to decrease as the number of prod-
ucts of the feature models increase. We believe these results
shed light on the potential benefits that evolutionary al-
gorithms and other search based techniques can bring for
variability modeling problems such as testing.

In summary, the contributions of our work are: i) Formal-
ization of the SPL testing prioritization scheme presented
in [16], ii) Implementation of this scheme with the evolution-
ary algorithm PPGS, and iii) Comprehensive evaluation and
comparison of PPGS and the prioritized-ICPL algorithm.

1255

Figure 1: Aircraft SPL Feature Model

2. FEATURE MODELS AND RUNNING EX-
AMPLE

Feature models have become a de facto standard for mod-
elling the common and variable features (depicted as la-
belled boxes) of an SPL and their relationships (depicted
with lines) collectively forming a tree-like structure, which
denotes the set of feature combinations that the products
of an SPL can have [17]. Figure 1 shows the feature model
of our running example, a hypothetical SPL of aircraft ma-
chines obtained from the SPLOT repository [19]. Each fea-
ture, apart from the root, has a single parent feature and
can have a set of child features. Notice here that a child
feature can only be included in a feature combination of a
valid product if its parent is included as well.

The root feature is always included. There are four differ-
ent kinds of hierarchical feature relationships: i) Optional
features are depicted with an empty circle and indicate that
they may or may not be selected if their respective par-
ent feature is selected. An example is feature Engine; ii)
Mandatory features are depicted with a filled circle and indi-
cate that they have to be selected whenever their respective
parent feature is selected. For example, features Wing and
Materials; iii) Inclusive-or relations are depicted as filled
arcs crossing over a set of lines connecting a parent feature
with its child features. They indicate that at least one of
the features in the inclusive-or group must be selected if the
parent is selected. An example is feature Materials that
if selected at least one of the features Metal, Wood, Plas-

tic, and Cloth must be selected; iv) Exclusive-or relations
are depicted as empty arcs crossing over a set of lines con-
necting a parent feature with its children features. They
indicate that exactly one of the features in the exclusive-
or group must be selected whenever the parent feature is
selected. For example, if feature Engine is selected, then
either feature Piston or feature Jet must be selected.

Besides the parent-child relations, features can also relate
across different branches of the feature model with so called
Cross-Tree Constraints (CTC). These constraints as well as
those implied by the hierarchical relations between features
are usually expressed and checked using propositional logic,
for further details refer to [3].

Definition 1. Feature List (FL) is the list of features in a
feature model.

Definition 2. Feature Set (FS) is a 2-tuple [sel,sel] where
sel and sel are respectively the set of selected and not-selected
features of a member product. Let FL be a feature list, thus
sel, sel ⊆ FL, sel ∩ sel = ∅, and sel ∪ sel = FL. The terms
p.sel and p.sel respectively refer to the set of selected and
unselected features of product p.

Prod A Wi E Ma H S L Pi J Me Wo Pl C

p0 X X X X X X X
p1 X X X X X X X
p2 X X X X X X X
p3 X X X X X X X
p4 X X X X X
p5 X X X X X X X
p6 X X X X X X X
p7 X X X X X X X

Table 1: Sample Feature Sets of Aircraft SPL

Definition 3. A feature set fs is valid in feature model fm,
i.e. valid(fs, fm) holds, iff fs does not contradict any of
the constraints introduced by fm.

The FL for the Aircraft feature model is [Aircraft,

Wing, Engine, Materials, High, Shoulder, Low, Pis-

ton, Jet, Metal, Wood, Plastic, Cloth]. For example,
the feature set p0=[{Aircraft, Wing, Engine, Materi-

als, High, Piston, Plastic}, {Shoulder, Low, Jet,

Metal, Wood, Cloth}] is valid. As another example, a
feature set with features Piston and Jet would not be
valid because it violates the constraint of the exclusive-or
relation which establishes that these two features cannot
appear selected together in the same feature set. In our
running example, the feature model denotes 315 valid
feature sets. Some of them are depicted in Table 1, where
for any given feature set its selected features are ticked (X)
and its unselected features are empty. In this table, we use
as column labels the shortest distinguishable prefix of the
feature names (e.g. Wi for feature Wing).

3. PRIORITIZED PAIRWISE COVERING
ARRAYS IN SPL

In this section we provide a formal definition of the pri-
ority scheme implemented by PPGS based on the sketched
description provided in [16] and its supporting code.

Definition 4. A prioritized product pp is a 2-tuple [fs, w],
where fs represents a valid feature set in feature model fm
and w ∈ R represents its weight. Let ppi and ppj be two
prioritized products. We say that ppi has higher priority
than ppj for test-suite generation iff ppi’s weight is greater
than ppj ’s weight, that is ppi.w>ppj .w.

As an example, let us say that we would like to prioritize
product p1 with a weight of 17. This would be denoted as
pp1=[p1,17].

Definition 5. A pairwise configuration pc is a 2-tuple [sel,
sel] representing a partially configured product, defining the
selection of 2 features of feature list FL, i.e. pc.sel∪pc.sel ⊆
FL ∧ pc.sel ∩ pc.sel = ∅ ∧ |pc.sel ∪ pc.sel| = 2. We say
a pairwise configuration pc is covered by feature set fs iff
pc.sel ⊆ fs.sel ∧ pc.sel ⊆ fs.sel.

Consider for example the pairwise configuration that in-
dicates that feature Plastic is selected while feature Cloth

is deselected pc1=[{Plastic},{Cloth}]. Notice that pc1 is
covered by products p0 and p2 of Table 1. Another exam-
ple is pairwise configuration pc2=[{High, Wood},{}] with
features High and Wood selected and no feature unselected.
This configuration is covered by products p4 and p5 of Ta-
ble 1. A last example is pc3=[{},{Shoulder, Low}], with
no selected features and Shoulder and Low as unselected
features. This configuration is covered by all the products

1256

shown in Table 1. In total, for all the 315 products denoted
by the feature model of Figure 1, there exist 240 valid pair-
wise configurations.

Definition 6. A weighted pairwise configuration wpc is a 2-
tuple [pc,w] where pc is a pairwise configuration and w ∈ R
represents its weight computed as follows. Let PP be a set of
prioritized products and PPpc be a subset, PPpc ⊆ PP, such
that PPpc contains all prioritized products in PP that cover
pc of wpc, i.e. PPpc = {pp ∈ PP |pp.fs covers wpc.pc}.
Then w =

∑
p∈PPpc

p.w

Let us consider the following set of prioritized prod-
ucts from Table 1. Let PP={[p0,17], [p1,17], [p2,15],

[p3,15], [p4,13] , [p5,13], [p6,6], [p7,6]} with ppi
= [fsi,wi], and assume that the remaining 307 products
of our feature model in Figure 1 (i.e. 315 minus 8 shown
in the table) have priority weight values of 0. The weight
of pairwise configuration pc1=[{Plastic},{Cloth}] is then
wpc1.w= pp0.w+pp2.w = 17+15 = 32, that is, the summa-
tion of the weights of the products whose feature sets cover
pc1 with weight greater than zero, namely p0 and p2. Simi-
larly, the weight for pc2 (High and Wood selected) is wpc2.w=
pp4.w+pp5.w = 13+13 = 26, and for pc3 wpc3.w=102 com-
puted by summing all the product weights because their fea-
ture sets all cover pc3. In total, the eight products shown in
Table 1 generate 169 weighted pairwise configurations with
value greater than zero.

Definition 7. A prioritized pairwise covering array ppCA
for a feature model fm and a set of weighted pairwise con-
figurations WPC is a set of valid feature sets FS that covers
all weighted pairwise configurations in WPC whose weight
is greater than zero: ∀wpc ∈ WPC (wpc.w > 0 ⇒ ∃fs ∈
ppCA such that fs covers wpc.pc).

Let us consider the prioritized products set PP just de-
scribed above. The following table lists six products that
together constitute a ppCA:

A Wi E Ma H S L Pi J Me Wo Pl C

X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X X X
X X X X X X X X
X X X X X

Notice that the first three rows correspond to products
p1, p2 and p5 of Table 1. Also notice that the last three
products are not part of that table even though their weights
are considered zero in our running example. That is, their
selection led to a ppCA with a smaller number of products
than the original set. Next we describe how this pairwise
prioritization scheme was implemented by PPGS.

The optimization problem we are interested in consists of
finding a prioritized pairwise covering array, ppCA, with the
minimum number of feature sets, that is: find ppCA with
minimum |ppCA|. What makes the problem far from trivial
is the constraints imposed to ppCA by Definition 7.

4. ALGORITHM DESCRIPTION
The Parallel Prioritized product line Genetic Solver

(PPGS) is a novel constructive genetic algorithm which fol-
lows the master-slave model to parallelize the evaluation of
the individuals [1]. It computes a ppCA as defined in the
previous section. In each iteration, PPGS adds one new
product to a partial solution until all pairwise combinations
are covered. Algorithm 1 sketches the pseudocode of PPGS.

It uses as inputs a feature model FM and the set of prioritized
products for the test suite generation. At the beginning, the
test suite is initialized with an empty list (Line 2) and the set
of remaining pairs (RP) is initialized with the weighted pair-
wise configurations present in at least one of the given prior-
itized products (Line 3), as it was described in Section 3. In
each iteration of the external loop (Lines 4-23) the algorithm
creates a random initial population of individuals (Line 6)
and enters an inner loop which applies the traditional steps
of a generational evolutionary algorithm (Lines 7-20). That
is, some individuals (products in our case) are selected from
the population P (t), recombined, and mutated. PPGS rep-
resents a product by only the list of selected features, so the
operators only affect the selected features. If a generated off-
spring individual is not a valid product (i.e., it violates any
constraint derived from the feature model), it is transformed
into a valid product by applying a Fix operation (Line 13)
provided by the FAMA tool [23].

Since the evaluation is performed in parallel in this algo-
rithm, the fixed individuals are stored in a structure for
later evaluation of them (Line 14). After we leave the in-
ner loop (Lines 7-20), the evaluation is performed in paral-
lel (Line 16), and finally the individuals are inserted in the
offspring population Q. The fitness value of an offspring in-
dividual (Line 16) is the sum of the weights of the weighted
pairwise configurations that would remain to be covered af-
ter adding the offspring solution to the test suite. Thus,
this fitness function must be minimized in order to first se-
lect the product that covers weighted pairwise configurations
with higher weights. Notice that, as the search progresses,
the cost of computing the fitness function is reduced because
every time less weighted pairwise configurations remain un-
covered.

In Line 18, the best individuals of P (t) and Q are kept for
the next generation P (t + 1). The internal loop is executed
until a maximum number of evaluations is reached. Then,
the best individual (product) found is included in the test
suite (Line 21) and RP is updated by removing the weighted
pairwise configurations covered by the selected best solution
(Line 22). Then, the external loop starts again until there
is no weighted pair left in the RP set.

We set the configuration parameters of PPGS with values
frequently observed in the literature for genetic algorithms:
crossover strategy one-point with a probability of 0.8, se-
lection strategy binary tournament, population size of 10
individuals, mutation that iterates over all selected features
of an individual and replaces a feature by another randomly
chosen feature with a probability of 0.1, and termination
condition of 1,000 fitness evaluations and full weight cover-
age in the external loop.

Let us show an example of the execution of the inner loop
of PPGS, assuming RP contains the following entries [wpc1,
wpc2, wpc3], where wpc1.pc = [{Engine, Piston},{}],
wpc2.pc = [{Cloth}, {Plastic}] and wpc3.pc= [{Jet},

{Plastic}]. Figure 2(a) shows the selected features of two
valid products. PPGS applies the evolutionary operators
only to the selected features. The dashed square indicates
the cross-over point for the two individuals. Figure 2(b)
shows the result of the crossover. Figure 2(c) illustrates
mutation of the first recombined individual, the mutated
element Jet is underlined. Notice that this product is in-
valid because features Piston and Jet are mutually exclusive
(see Figure 1). This situation requires the application of a

1257

Algorithm 1: Pseudocode of PPGS.

1: proc Input:feature model FM, prioritized products prods
2: TS ← ∅ // Initialize the test suite
3: RP ← weighted pairs to cover(prods)
4: while not empty(RP) do
5: t=0
6: P(t) ← Create Population() // P = population
7: while evals < totalEvals do
8: Q ← ∅ // Q = auxiliary population
9: for i ← 1 to (PPGS.popSize / 2) do
10: parents←Selection(P(t))
11: offspring←Recombination(PPGS.Pc,parents)
12: offspring←Mutation(PPGS.Pm,offspring)
13: Fix(offspring)
14: ParallelEvaluator.addSolution(offspring)
15: end for
16: solutions←ParallelEvaluator.evaluate();
17: Insert(solutions,Q)
18: P(t+1) := Replace (Q,P(t))
19: t= t + 1
20: end while //internal loop
21: TS ← TS ∪ best solution(P(t))
22: RemovePairs(RP, best solution(P(t)))
23: end while //external loop
24: return TS
25: end proc

fix operation to provide an actual valid product shown in
Figure 2(d). Once a valid product is found, the algorithm
generates all its possible pairs and removes them from a copy
of the RP set, from which the fitness value is computed as the
number of pairs that remain still uncovered. In our example,
wpc2 and wpc3 are covered by the product on Figure 2(d),
thus the fitness function for this individual is wpc3.w, the
remaining weight that has not yet been covered. The inner
loop is repeated until the algorithm reaches 1,000 evalua-
tions. Then, the best individual is removed from RP, the
covered pairs, and the product is added to the current test
suite TS. When there are no more weighted pairs to be cov-
ered or the maximum number of fitness evaluations has been
reached, the algorithm returns its current TS value.

PPGS has been implemented using jMetal [7], a Java
framework aimed at the development, experimentation, and
study of metaheuristics for solving optimization problems.
Additionally and as mentioned before, PPGS uses a frame-
work for the analysis of feature models called FAMA [23].
This framework provides a simple, easy-to-use, and exten-
sible programming API that supports a common and basic
set of feature model operations.

Figure 2: Evolutionary Operations

5. EVALUATION
This section describes how our evaluation was carried out.

We start with the algorithm used to compare and contrast
PPGS, followed by the methods employed to assign priori-
ties, the selection of the products to prioritize, the experi-
mental corpus of feature models, and the software and hard-
ware infrastructure used.

5.1 Prioritized-ICPL (pICPL) Algorithm
To compare and contrast our PPGS algorithm we em-

ployed prioritized-ICPL, a greedy algorithm to generate
n-wise covering arrays developed by Johansen et al. [16].
Prioritized-ICPL does not compute covering arrays with full
coverage but rather covers only those n-wise combinations
among features that are present in at least one of the pri-
oritized products, as was described in Section 3. We must
highlight here that the pICPL algorithm uses data paral-
lel execution, supporting any number of processors. Their
parallelism comes from simultaneous operations across large
sets of data. For further details on prioritized-ICPL please
refer to [16].

We should remark that an earlier and more well-known
version of a greedy algorithm for SPL pairwise testing by the
same authors Johansen et al. is also called ICPL [15]. How-
ever that version did not consider prioritization. To avoid
any confusions and as a short hand notation, henceforth we
will use the term pICPL to refer to prioritized-ICPL.

5.2 Weight Priority Assignment Methods
We considered three methods to assign weight values to

prioritized products.

5.2.1 Measured values
For this type, the weights were derived from non-functional

properties values obtained from 16 real SPL systems, from
different problem domains and implemented using different
technologies, that were measured with the SPL Conqueror
approach [22]. This approach aims at providing reliable
estimates of measurable non-functional properties such as
performance, main memory consumption, and footprint. It
works by performing a set of actual property measurements
on different products (usually a proper subset of all the fea-
ture combinations denoted by a feature model) with differ-
ent feature interaction types. The measured values are then
used to compute the estimated property values for the fea-
ture combinations that were not measured. This choice of
weight priority assignment allows us to emulate more re-
alistic scenarios whereby software testers need to schedule
their testing effort giving priority, for instance, to products
or feature combinations that exhibit higher footprint or per-
formance.

For our work, we use the actual values taken on the mea-
sured products considering pairwise feature interactions. Ta-
ble 2 summarizes the SPL systems evaluated, their measured
property (Prop), number of features (NF), number of prod-
ucts (NP), number of configurations measured (NC), and the
percentage of prioritized products (PP%) used in our com-
parison as explained shortly.

5.2.2 Rank based values
For this second type of weight values, we selected the prod-

ucts to prioritize based on how dissimilar they are when com-
pared to all other products of an SPL, and assigned them

1258

SPL Name Prop NF NP NC PP%
Prevayler F 6 32 24 75.0
LinkedList F 26 1440 204 14.1
ZipMe F 8 64 64 100.0
PKJab F 12 72 72 100.0
SensorNetwork F 27 16704 3240 19.4
BerkeleyDBF F 9 256 256 100.0
Violet F 101 ≈ 1E20 101 ≈ 0.0
Linux subset F 25 ≈ 3E24 100 ≈ 0.0
LLVM M 12 1024 53 5.1
Curl M 14 1024 68 6.6
x264 M 17 2048 77 3.7
Wget M 17 8192 94 1.15
BerkeleyDBM M 19 3840 1280 33.3
SQLite M 40 ≈ 5E7 418 ≈ 0.0
BerkeleyDBP P 27 1440 180 12.50
Apache P 10 256 192 75.0
Footprint, Main memory consumption, Performance,

Number of Features, Number of Products, Number of
Configurations, Percentage of Prioritized products.

Table 2: Measured Values Case Studies Summary

priority weights based on their rank values. For further de-
tails please refer to the associated materials. The intuition
behind this assignment choice is that by giving the same
weight value to two of the most SPL-wide dissimilar prod-
ucts, the weight values will be more likely spread among a
larger number of pairwise configurations making the cover-
ing array harder to compute. In addition, this enables us
to select different percentages of the number of products for
prioritization as elaborated in Subsection 5.3.

5.2.3 Random Values
For this type of weight values, we randomly generate weights

between the minimum and maximum values obtained with
the ranked based values approach.

5.3 Product Prioritization Selection
We selected the products for prioritization based on the

priority assignment method. For the measured values as-
signment method, all the measured products were used as
our prioritization products. In three cases this meant in-
cluding all the products of the product line. Please refer to
Table 2 for further details. For the rank based values and
the random values assignment methods, a percentage of the
products denoted by each individual feature model was used
for product prioritization. The selected percentages are: 5%,
10%, 20%, 30%, and 50%.

5.4 Experimental Corpus
We created three groups based on both the number of

products denoted by the feature models and how their prior-
ity was assigned as shown in Table 3. Group G1 was formed
with 160 feature models, whose number of products ranges
from 16 to 1000 products, and that were evaluated with rank
based and random values. Group G2 was formed with 59
feature models, whose number of products ranged from 1000
to 80000 that were also evaluated with rank based and ran-
dom values. The threshold value to divide groups G1 and
G2, and the selected percentages were chosen to provide an

G1 G2 G3 Summary
NFM 160 59 16 235
NP 16-1K 1K-80K 32- ≈3E24 16- ≈3E24
NF 10-56 14-67 6-101 6-101

WPA RK,RD RK, RD M
PP% 20,30,50 5,10,20 ≈0.0 – 100
PI 960 354 16 1330

NFM: Number Feature Models, NP: Number Products,
NF: Number Features, WPA: Weight Priority

Assignment, RK: Rank based, RN: Random, M:
Measured, PP%: Prioritized Products Percentage, PI:

Problem Instances

Table 3: Evaluation Case Studies Summary

ample variety of number of products to prioritize. Group G3
was formed with 16 feature models, with number of prod-
ucts ranging from 16 to ≈3E24 that were evaluated with
measured values.

We obtained 16 feature models from SPL Conqueror, 5
from Johansen et al. [16], and 201 from the SPLOT web-
site [19] (a repository for the feature model analysis research
community). Thus in total we employed 222 distinct feature
models. Please notice that we also incorporated 5 SPL Con-
queror feature models to G1 and 8 to G2. This yields a
grand total of 235 feature models to analyze. For G1 and
G2 the problem instances are computed considering that
for each feature model two priority assignment methods are
used with three different prioritization selection percentages.
For example, this yields for G1 160×2×3 = 960 instances. In
total 1330 problem instances were analyzed, with two algo-
rithms PPGS and pICPL, with 30 independent executions.
This means that the data of a total of 79800 independent
runs was generated and analyzed.

5.5 Hardware and Software Setup
PPGS and pICPL are non-deterministic algorithms, so

we performed 30 independent runs for a fair comparison be-
tween them. As performance measures we analyzed both
the number of products required to test the SPL and the
time required to run the algorithm. In both cases, the lower
the value the better the performance, since we want a small
number of products to test the SPL and we want the algo-
rithm to be as fast as possible. All the executions were run
in a cluster of 16 machines with Intel Core2 Quad proces-
sors Q9400 (4 cores per processor) at 2.66 GHz and 4 GB
memory running Ubuntu 12.04.1 LTS and managed by the
HT Condor 7.8.4 cluster manager. Since we have four cores
available per processor, we have executed only one task per
single processor, so we have used four parallel threads in each
independent execution of the analyzed algorithms. The to-
tal 79800 independent runs of our evaluation required about
two weeks of computation on a 64-core dedicated cluster.

6. RESULTS AND ANALYSIS
In this work we have used two different statistical tech-

niques to measure different aspects of the comparison.

6.1 Wilcoxon Test
In order to check if the differences between the algorithms

are statistically significant or just a matter of chance, we

1259

applied the non-parametric Wilcoxon rank-sum test. We
highlight in the tables the statistically significant differences
with a confidence level of 95% (p-value under 0.05).

In Table 4 we summarize the results obtained for group
G1, feature models with up to 1000 products. Each column
corresponds to one algorithm and in the rows we show the
number of products required to reach 50% up to 100% of
total weighted coverage. The data shown in each cell is the
mean and the standard deviation of the 30 independent runs.
We highlight with a light gray background those values that
are better with respect to the other algorithm with a sta-
tistically significant difference. We can observe that PPGS
requires a smaller number of products to test the SPL with
a significant difference when we consider a coverage level of
80% up to 99%. In the rest of the cases the differences are
not statistically significant, so we cannot claim that one algo-
rithm is better than the other. Regarding the time, pICPL
is around 6 times faster than PPGS with a statistically sig-
nificant difference. The time is given in milliseconds in the
tables.

Cov. PPGS pICPL Cov. PPGS pICPL
50% 1.200.40 1.200.40 96% 4.001.23 4.371.42

75% 1.920.51 1.980.58 97% 4.381.32 4.711.54

80% 2.150.59 2.250.68 98% 4.831.46 5.181.74

85% 2.470.72 2.580.81 99% 5.581.71 5.871.99

90% 2.880.86 3.131.03 100% 7.562.85 7.563.03

95% 3.721.14 4.061.33 TIME 2389728669 1011618842

Table 4: Mean and standard deviation of 30 indep.
runs for G1 (significant differences are highlighted)

Table 5 shows the results for group G2: feature models
with 1000 to 80000 products. We use the same legend and
notation as for Table 4. In this case the advantage of PPGS
over pICPL is larger than in the previous case. First, we can
observe that PPGS is better than pICPL with statistically
significant difference in all the coverage percentages except
100%. Regarding the computation time, PPGS is faster than
pICPL but without statistically significant difference. From
these results, the trend we can observe is that as the number
of products of the SPL grows PPGS is still better in quality
than pICPL while it is also better in runtime. Part of our
future work is to verify if this trend holds for feature models
with a larger number of products.

Cov. PPGS pICPL Cov. PPGS pICPL
50% 1.160.36 1.360.83 96% 4.980.97 5.833.14

75% 2.090.42 2.471.65 97% 5.551.10 6.433.27

80% 2.390.52 2.861.79 98% 6.341.34 7.233.48

85% 2.730.59 3.272.08 99% 7.661.88 8.594.11

90% 3.360.76 3.982.38 100% 14.5710.65 13.799.98

95% 4.590.90 5.423.12 TIME 2737287.2E+5 6381642.1E+6

Table 5: Mean and standard deviation of 30 indep.
runs for G2(significant differences are highlighted)

Let us now focus on group G3, feature models with mea-
sured weight values. Table 6 shows the average number
of products required to cover each SPL and the time for
both pICPL and PPGS over the 16 models. According to
the statistically significant differences the conclusions in this
group of models are similar to the conclusions in the previ-
ous ones: PPGS is better in quality (lower number of prod-
ucts) while pICPL is faster. In detail, regarding the quality

of the solutions, PPGS is better than pICPL in 68 model-
coverage combinations with statistical significant difference,
while pICPL is better than PPGS only in 19 model-coverage
combinations. Regarding the time, pICPL is usually faster
than PPGS with a statistically significant difference, with
the only exception of the SensorNetwork model, in which
they do not have statistically significant difference.

If we take a closer look at the data in the table and tak-
ing into account the statistical significant differences, we can
observe that PPGS is overall better than pICPL in 8 out of
the 16 models, namely: Apache, BerkeleyDBF, Berkeley-

DBP, LLVM, PkJab, SensorNetwork, Violet and Wget. On the
other hand, pICPL is better only for 2 models when all cov-
erage percentages are considered: Prevayler and ZipMe. In
the remaining 6 models pICPL is better for some percent-
ages while PPGS is better for others.

As a general conclusion of this first analysis we can say
that if the number of products to test is a critical aspect
for the Testing Engineer, PPGS should be applied to gener-
ate these products instead of pICPL. The time required by
PPGS is usually no longer than a few minutes, which is a
reasonable time to generate a better quality test suite. We
argue this is the most common scenario in software com-
panies with SPLs, where carrying on each product test can
require hours if not days to perform, specially if they in-
volve complex software and hardware setups [16]. On the
other hand, pICPL could be employed when the number of
products to test is not a critical issue and a slightly faster
generation of the test suite is preferable.

6.2 Â12 statistic
In order to properly interpret the results of statistical

tests, it is always advisable to report effect size measures.
For that purpose, we have also used the non-parametric ef-
fect size measure Â12 statistic as recommended by Arcuri
and Briand [2]. Given a performance measure M , Â12 mea-
sures the probability that running algorithm A yields higher
M values than running another algorithm B. If the two algo-
rithms are equivalent, then Â12 = 0.5. If Â12 = 0.3 entails
one would obtain smaller results 70% of the time with A.
Table 7 shows the Â12 statistic to assess the practical sig-
nificance of the results. In this table a value lower than
0.5 means that PPGS is better than pICPL, a value greater
than 0.5 means pICPL is better than PPGS and 0.5 means
a draw. At a first glance, we can see that most of the times
(31), PPGS obtains smaller test suites for all percentages
of coverage, meanwhile pICPL is only better than PPGS
twice. We have highlighted with dark and light gray back-
ground the lowest and highest values of the table (0.2497
and 0.5157). The lowest value indicates that PPGS obtains
a better test suite than pICPL for 98% of coverage in a
model of G2 in more than 75% of the cases. The highest
value indicates that pICPL obtains a better test suite for
100% coverage in a model of G1 with a probability near 0.5.
In general, this statistic reconfirms that PPGS gets better
test suites than pICPL in terms of the number of products.

7. THREATS TO VALIDITY
We identified two main threats to validity in our work.

First, we used a single assignment for the parameters values
of PPGS based on the authors’ experience. A change in
the values of these parameters could have an impact in the
results of the algorithm. Thus, we can only claim that the

1260

Model Alg. 50% 75% 80% 85% 90% 95% 96% 97% 98% 99% 100% TIME

Apache
PPGS 2 3 3 4 4 6 6 6 7 7 7 10394
pICPL 2 3 3 4 5 6 7 7 7 8 8 7582

Berk.DBF
PPGS 2 4 4 5 5.97 6.97 6.97 6.97 7.97 8 8.17 11213
pICPL 2 4 5 6 7 8 8 8 8 9 9 8152

Berk.DBM
PPGS 2 3 3 4 4.73 6.87 7.80 8.77 9.97 11.90 23.33 117607
pICPL 2 3 3 4 6 7 8 8 10 11 21 94512

Berk.DBP
PPGS 1 2 2 3 3 4 4.83 5 5.93 7 10.60 47361
pICPL 1 2 3 3 4 6 6 6 6 7 12 57291

Curl
PPGS 2 3 3 3.97 4.03 5.83 6 6.50 7.37 8.07 9.63 17454
pICPL 2 3 3 4 4 6 6 6 7 7 8 6382

LinkedList
PPGS 1 2 2 2 3 4.23 5 5 6.13 7.79 13.37 60684
pICPL 1 2 2 3 3 4 4 5 7 11 14 71151

Linux
PPGS 2 4 4 5 6 7 7.67 8 8.37 9.40 11.10 49385
pICPL 2 4 5 5 6 8 8 8 8 9 10 30522

LLVM
PPGS 2 3 3.03 4 5 6 6 6.07 7 8 8.17 12805
pICPL 2 3 4 4 5 6 7 7 7 8 8 9032

PKJab
PPGS 1 2 2 3 3.07 4 5 5 5 6 7 11439
pICPL 1 2 3 3 3 5 5 6 7 8 8 4661

Prevayler
PPGS 2 3 3 3 4 5 5 5.60 6 6 6 8091
pICPL 2 3 3 3 4 5 5 5 6 6 6 2412

S.Network
PPGS 1 3 3 3 4 5.03 5.47 6 6.97 7.87 13.97 71971
pICPL 1 3 4 5 6 8 9 9 10 11 17 74181

SQL.Mem
PPGS 1 2.17 2.90 3.23 4.07 6.14 6.97 7.93 9.23 11.70 31.53 903118
pICPL 1 3 4 4 5 8 8 9 11 14 28 407991

Violet
PPGS 1 1 1 2 2 2.93 3 3.07 3.30 4.53 12.83 31376054
pICPL 1 1 1 2 2 3 3 4 4 6 15 2471691

Wget
PPGS 2 2.13 3 3.07 4 5.43 6 6.40 7 8.03 11.37 31525
pICPL 2 3 3 4 4 6 6 7 7 9 11 19612

x264
PPGS 1.23 2.23 3 3.07 4 5.30 6 6.50 7.23 8.47 12.10 37368
pICPL 1 2 3 3 4 5 6 7 7 9 13 13441

ZipMe
PPGS 2 3 3 4 5 6 6 7 7 7 7.03 13035
pICPL 2 3 3 4 5 6 6 6 7 7 7 6142

Table 6: Group G3. When considering array sizes PPGS is statistically better than pICPL in 69 cases, and
pICPL is better in 18 cases.

Group 50% 75% 80% 85% 90% 95%
G1 0.4985 0.4729 0.4511 0.4473 0.3785 0.3501
G2 0.4529 0.4193 0.3760 0.3726 0.3436 0.2887
G3 0.5104 0.4562 0.2844 0.3563 0.3198 0.3239
Group 96% 97% 98% 99% 100%
G1 0.3410 0.3703 0.3634 0.4000 0.5157
G2 0.2847 0.2647 0.2497 0.2595 0.4945
G3 0.3312 0.3135 0.3927 0.3068 0.4166

Table 7: Â12 statistical test results for all groups.
PPGS yields better test suite size values.

conclusions are valid for the combination of parameter values
that we used. Second, the selection of feature models for
the experiment corpus can indeed bias the results obtained.
To counteract this threat, we used 3 different sources for
our feature models. From them we selected a number of
feature models as large as possible, with the widest ranges
of both number of features and number of products. We
should point out that beyond the ranges of our groups G1
and G2, the feature analysis tool FAMA that we employ
for PPGS presents a performance and scalability bottleneck.
Addressing these limitations is part of our future work.

8. RELATED WORK
There exists substantial literature on both search based

testing and SPL testing. In this section, we briefly summa-
rize those pieces of work closest to ours. Within the area
of Search-Based Software Engineering a major research fo-
cus has been software testing [12]. A recent overview by
McMinn highlights the major achievements made in the area

and some of the open questions and challenges [18]. Rele-
vant in this realm is the work by Ferrer et al. who propose a
test prioritization genetic algorithm [10]. However, in clear
contrast with our work their algorithm is not for SPLs but
for systems without variability. Some of the very few appli-
cations of search based techniques to SPL are summarized
next. Garvin et al. applied simulated annealing to com-
binatorial interaction testing for computing n-wise coverage
for SPLs [11]. Ensan et al. propose a genetic algorithm
approach for test case generation for SPLs [9]. In contrast
with our work, they use as fitness function a variation of cy-
clomatic complexity metric adapted to feature models, their
goal is not n-wise coverage and they do not consider priori-
ties. Henard et al. propose an approach that uses a dissim-
ilarity metric that favors individuals whose n-wise coverage
varies the most from the current population thus increasing
the chances of wider coverage [13]. A key difference with
our work is that the prioritization is not based on assigned
weights that have a perceived market or quality value. Re-
cent surveys on SPL testing [6,8], attest the increasing rele-
vance of the topic within the SPL community but also con-
firm that the latent potential of search based testing tech-
niques remains largely untapped. Perrouin et al. propose an
approach that translates t-wise coverage problems into Al-
loy programs and rely on its automatic instance generation
to obtain covering arrays [20]. Hervieu et al. employ con-
straint programming for computing pairwise coverage from
feature models [14]. In sharp contrast with our work, none
of these algorithms considers any prioritization criteria.

1261

9. CONCLUSIONS AND FUTURE WORK
In this paper we formalized a SPL testing prioritization

scheme and presented its implementation with PPGS. We
evaluated PPGS with 235 feature models of different charac-
teristics using different selection criteria for product prioriti-
zation. Furthermore, we compared PPGS with greedy algo-
rithm pICPL, a comparison that totalled 79800 independent
runs. Our analysis showed that while PPGS obtains overall
shorter covering arrays it exhibits a performance difference
with pICPL that tends to decrease for the feature models
with larger number of products. It should be noted though
that the current PPGS implementation is not fine-tuned for
performance, so part of our future work is to evaluate al-
ternative representations of population individuals and evo-
lutionary operations, and to streamline the feature model
analysis support. Addressing these two limitations will ex-
tend our study to include feature models with more than
80,000 prioritized products. Also, recall that the current
stopping condition of PPGS is a fixed number of evalua-
tions. We plan to study the impact on performance of dif-
ferent approaches to adapt this stopping condition based on
the characteristics of feature models. A starting point is the
work of Bhandari et al. [4]. We believe our work sheds light
on the potential of search based techniques for SPL testing.

10. ACKNOWLEDGEMENTS
This research is partially funded by the Austrian Sci-

ence Fund (FWF) project P25289-N15 and Lise Meitner
Fellowship M1421-N15, the Spanish Ministry of Economy
and Competitiveness and FEDER under contract TIN2011-
28194 and fellowship BES-2012-055967. It is also partially
founded by project 8.06/5.47.4142 in collaboration with the
VSB-Tech. Univ. of Ostrava and Universidad de Málaga,
Andalućıa Tech. We thank Martin Johansen, Øystein Hau-
gen, and Norbert Siegmund for their help with pICPL and
SPLConqueror.

11. REFERENCES
[1] E. Alba and G. Luque. Parallel genetic algorithms,

volume 367 of Studies in Computational Intelligence.
Springer-Verlag, 2011.

[2] A. Arcuri and L. Briand. A hitchhiker’s guide to
statistical tests for assessing randomized algorithms in
software engineering. Softw. Test. Verif. Reliab, 2012.

[3] D. Benavides, S. Segura, and A. R. Cortés.
Automated analysis of feature models 20 years later:
A literature review. Inf. Syst., 35(6):615–636, 2010.

[4] D. Bhandari, C. A. Murthy, and S. K. Pal. Variance as
a stopping criterion for genetic algorithms with elitist
model. Fundam. Inform., 120(2):145–164, 2012.

[5] H. Cichos, S. Oster, M. Lochau, and A. Schürr.
Model-based coverage-driven test suite generation for
software product lines. In MoDELS, pages 425–439,
2011.

[6] P. A. da Mota Silveira Neto, I. do Carmo Machado,
J. D. McGregor, E. S. de Almeida, and S. R.
de Lemos Meira. A systematic mapping study of
software product lines testing. Information & Software
Technology, 53(5):407–423, 2011.

[7] J. J. Durillo and A. J. Nebro. jmetal: A java
framework for multi-objective optimization. Advances
in Engineering Software, 42(10):760 – 771, 2011.

[8] E. Engström and P. Runeson. Software product line
testing - a systematic mapping study. Information &
Software Technology, 53(1):2–13, 2011.

[9] F. Ensan, E. Bagheri, and D. Gasevic. Evolutionary
search-based test generation for software product line
feature models. In CAiSE, pages 613–628, 2012.

[10] J. Ferrer, P. M. Kruse, J. F. Chicano, and E. Alba.
Evolutionary algorithm for prioritized pairwise test
data generation. In T. Soule and J. H. Moore, editors,
GECCO, pages 1213–1220. ACM, 2012.

[11] B. J. Garvin, M. B. Cohen, and M. B. Dwyer.
Evaluating improvements to a meta-heuristic search
for constrained interaction testing. Empirical Software
Engineering, 16(1):61–102, 2011.

[12] M. Harman, S. A. Mansouri, and Y. Zhang.
Search-based software engineering: Trends, techniques
and applications. ACM Comput. Surv., 45(1):11, 2012.

[13] C. Henard, M. Papadakis, G. Perrouin, J. Klein,
P. Heymans, and Y. L. Traon. Bypassing the
combinatorial explosion: Using similarity to generate
and prioritize t-wise test suites for large software
product lines. CoRR, abs/1211.5451, 2012.

[14] A. Hervieu, B. Baudry, and A. Gotlieb. Pacogen:
Automatic generation of pairwise test configurations
from feature models. In T. Dohi and B. Cukic, editors,
ISSRE, pages 120–129. IEEE, 2011.

[15] M. F. Johansen, Ø. Haugen, and F. Fleurey. An
algorithm for generating t-wise covering arrays from
large feature models. In SPLC (1), pages 46–55, 2012.

[16] M. F. Johansen, Ø. Haugen, F. Fleurey, A. G.
Eldegard, and T. Syversen. Generating better partial
covering arrays by modeling weights on sub-product
lines. In R. B. France, J. Kazmeier, R. Breu, and
C. Atkinson, editors, MoDELS, volume 7590 of
Lecture Notes in Computer Science, pages 269–284.
Springer, 2012.

[17] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, 1990.

[18] P. McMinn. Search-based software testing: Past,
present and future. In ICST Workshops, pages
153–163. IEEE Computer Society, 2011.

[19] M. Mendonca. Software Product Line Online
Tools(SPLOT), 2013. http://www.splot-research.org/.

[20] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. L.
Traon. Automated and scalable t-wise test case
generation strategies for software product lines. In
ICST, pages 459–468. IEEE Computer Society, 2010.

[21] K. Pohl, G. Bockle, and F. J. van der Linden.
Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, 2005.

[22] N. Siegmund, M. Rosenmüller, C. Kästner, P. G.
Giarrusso, S. Apel, and S. S. Kolesnikov. Scalable
prediction of non-functional properties in software
product lines: Footprint and memory consumption.
Information & Soft. Technology, 55(3):491–507, 2013.

[23] P. Trinidad, D. Benavides, A. Ruiz-Cortes, S. Segura,
and A. Jimenez. Fama framework. In Software Product
Line Conference, 2008. SPLC ’08. 12th International,
pages 359–359, Sept.

1262

